Kate Solbakk
Mikroliv
Prints
Gallery
Main
Line Art
Blog
Info
About
Commissions
Newsletter
English
Norsk
The Soil Factory
A digital illustration of the rhizosphere and the rich microbial activity within it, all working to build healthy soil.
Peranema's escape
A digital illustration of an underwater scene with a large flagellate, Peranema, escaping from a giant Amoeba proteus. The amoeba fills up the bottom of the scene, and the flagellate is reaching upward with its flagellum toward the shining surface of the water in its efforts to escape.
Vorticella from the lake
A digital illustration of a large vorticella attached to some yellowish brown debris with a dark background. The crown of cilia are visible in action with a diatom and some debris being pulled toward the cell.
Nettle tea
A digital illustration imagining a microscopic view of a nettle tea brewing for use in a garden. There are many bacteria, some nettle needles, bright green chloroplasts and other pieces of plant debris swirling around in water, with a bright blueish white background.
Root biofilm
A digital illustration of bacteria glued together into a complex structure with tunnels and pillars. A larger cell with two flagella sits on top of the structure looking as though it's trying to break into it.
Phacus Portrait
A digital drawing of a protozoa of the genus Phacus, made by Katelyn Solbakk. The drawing is a portrait of Phacus against a solid black background. The organism is green with a red eyespot and one whip-like flagellum. The cell has a delicate twisted shape which is reminiscent of a glass sculpture.
Coleps feeding frenzy
Testate amoeba in soil
A full page detailed illustration of a testate amoeba of the genus Euglypha in soil, by Katelyn Solbakk. The illustration is in black ink, using the stippling technique on an A4 sheet of white stone paper. The organism is centered on the page, with pseudopods visible, crawling through a space in the soil surrounded by particles of mineral and organic matter, fungal strands, bacteria and small flagellates.
Testate amoeba with microplastic
A digital drawing of a testate amoeba of the genus Difflugia in soil, made by Katelyn Solbakk. The illustration features a testate amoeba which has built a shell using tiny fragments of mineral particles collected from its environment. This amoeba has one strong blue fragment in the center of its shell, because it has started to construct its shell using microplastic instead of mineral particles.
Heliozoan
Actinophrys is a type of Heliozoan, also known as a "sun animalcule" because it looks like a tiny sun in the microscope. I drew this to celebrate the return of sunlight after the long dark winter.
Leptophrys
amoeba
Root surface
Diverse communities of microorganisms cover the surface of a plant's root as it grows through the soil.
Colpoda
Colpoda is a genus of ciliates that is very common and widespread, especially in moist soil habitats with plenty of bacteria as a food source. They are usually large, super active and fun to watch in the microscope as they zoom around hunting for food.
Actinobacteria
If you've ever made a hot compost pile and thought you saw some ash inside after it heated up, it was probably Actinobacteria. As a compost pile progresses through different stages, the microorganisms change too. Some species of Actinobacteria love hot compost piles and many of them are pros at breaking down difficult materials that other microbes can't manage. They are also responsible for the lovely scent of rain, among many, many other things.
Ciliate death
Stentor
Loxodes rex
This is
Loxodes rex
, a monster of a ciliate with an awesome name! Even though they are a single cell,they can be big enough to see without magnification.Learn more about this amazing creature here:
https://link.springer.com/article/10.1007/s00248-015-0656-x
Loxophyllum
attacked by
Lacrymaria
A ciliate called
Loxophyllum meleagris
is being attacked by a much smaller ciliate called
Lacrymaria olor
.
L. olor
has a long "neck" which can extend to many times the length of the cell body,and in this case it managed to snag Loxophyllum and tear open a large hole in the cell.This drawing was inspired by an amazing microscope video captured by James Weiss,which you can see here:
https://www.instagram.com/p/BohvoZxg4nT/
.Incredibly, the cell managed to recover and completely heal from the attack within an hour.
Phacus
Phacus
is a genus of common freshwater protozoa that are famous for their uniquely beautiful leaf-shaped cell.The cell is green because it is capable of photosynthesis, meaning it can produce its own food, just like plants.However, they are also able to consume food such as bacteria and algae.
Springtail
Springtails could be considered the "rabbits" of the soil.They have a forked "tail" which rests folded up under the abdomen,and flings outwards causing the springtail to leap great distances.Springtails are not microscopic like the other organisms seen in the soil life collection.They are very tiny, but can be seen with the naked eye. If you have a worm compost bin,you have probably seen these tiny white creatures hopping around in there.They prefer moist conditions but are not aquatic.The water shown in the drawing is the thin film of water coating soil particles,which creates habitat for the protozoa, bacteria, and other members of the soil food web.
Vorticella
Stylonychia
Stylonychia
is a genus of ciliates which appears commonly in both terrestrial and aquatic habitats.It is easily recognized by its oval shape and tufts of joined cilia called cirri,some of which are used as "legs" and give the cell an almost insect-like appearance.In this illustration I have also included a robust network of fungal hyphae,which are an important feature of a healthy and balanced soil ecosystem.
Tardigrade
Due to its ability to survive the harshest environmental conditions,the tardigrade is probably one of the more famous microscopic organisms,but it is more common in freshwater and not something we typically see in soil samples.
Hookah smoking tardigrade
Amoeba
This amoeba is swallowing up a piece of green algae. The amoeba has no defined body shape,and uses "false feet", also known as pseudopods, to move around and capture food.The soil in this image is very rich in organic material and has many threads of fungal hyphae as well as bacteria helping to bind soil particles into aggregates,creating a strong and resilient soil structure that is also good habitat for soil organisms.In the top left corner is a ciliated protozoa in the genus
Stylonychia
, which is common in both soil and freshwater.Several small round flagellated protozoa are also seen to the left of the amoeba.
Rhizosphere
The illustration is a simplified glimpse into what it might look like in the area around a plant’s roots in the soil.The cloudy greenish substance represents exudates that are secreted by the root,which attracts and feeds colonies of bacteria. Mycorrhizal fungi have begun to colonize this root as well,inhabiting both inside and outside the root. They will help extend the root network,allowing the plant greater access to nutrients.A few larger organisms such as flagellates (small protozoa) and ciliates are swimming around too,grazing on the bacteria and freeing up nutrients in a form plants can use.
Difflugia
Difflugia
is a genus of testate amoebae that builds its shell using particles from mineral or organic sources.They collect materials from their environment, or from the food they have eaten.
Rotifer
Rotifers are multicellular animals that also play an important role in nutrient cycling in the soil.They are filter feeders, using rows of cilia around their mouthparts to create a vortex,much like
Vorticella
, which pulls water and food particles into the rotifer’s mouth.There are many different kinds of rotifers; depicted is a bdelloid rotifer.There are over 450 species of bdelloid rotifers, and this is a generalized depiction of them.Just behind and to the right of the rotifer you can see a naked amoeba sliding through the soil using its pseudopods (it almost looks like a piece of gum stuck to the wall).The small particles flowing in a circular motion around the rotifer are bacteria, which the rotifer is feeding on,and there are also various fungal hyphae seen woven throughout the soil aggregates.
Vorticella
Vorticella
is a genus of ciliates (protozoa) that can be found in the soil.They are usually seen fixed to soil particles by a stalk which can coil up like a spring if
Vorticella
is disturbed.They can also be seen swimming freely on occasion. This protozoa is a filter feeder,using a ring of cilia (tiny hairs) around its mouth opening to create a whirling vortex in the water,sucking in particles of food.
Vorticella
mainly feeds on bacteria.To the left of
Vorticella
you can also see a small flagellate in the genus
Euglena
, swimming by.Looking at the surrounding soil, you can see that at a microscopic level soil is much more than "dirt".It is a diverse and fascinating habitat,made up of many different fragments and particles of matter in different stages of decomposition and recycling,held together by bacteria slime, fungal threads and other organic matter.
Ciliates
The two large protozoa pictured are ciliates of the genus
Euplotes
.They use long hairs called cilia to swim and control movement in the soil water.The three green protozoa on the left side of the picture are flagellates.Flagellates are typically smaller than ciliates and travel using only one or two long whip-like tails.When protozoa eat bacteria,they release the nutrients held in the bacterial cells back into the soil in a form plants can use.This makes protozoa very important members of a healthy soil food web.
Testate amoeba
Testate amoebae are another kind of protozoa that can be very common in soil.We often see testate amoebae in forest soils along with many fungal hyphae.Amoebae move by forming "pseudopods" or false feet to push or pull themselves around.It is usually difficult or impossible to see the living amoeba within its shell (test) because the amoeba itself is transparent and often hiding inside the shell.
Nematode
The nematode is trapped by predatory fungus. Nematodes use chemical sensing to find food,so the fungus emits an attractive chemical in the ring cells to draw the nematode into them.Once a nematode is within the ring, the cells swell up like a balloon forming a tight collar.The nematode cannot break free and quickly dies. Fungal hyphae then grow into the nematode’s body to digest it.In this image the fungus is growing on a plant root, surrounded by root hairs.The root feeding nematode (identified by the stylet) was caught by the fungus while trying to feed on the root,so by trapping the nematode to feed itself, the fungus has also helped to defend the plant.
Mineral soil
This soil contains very little organic matter. It is likely also compacted, and erodes easily in wind and rain. There is little life or evidence of microbial activity that would maintain a diverse and complex habitat. Two small flagellates, some of the hardy pioneering life forms that can survive these harsh conditions, scout for bacteria to eat. There are few hiding places or food sources available, so biodiversity is severely limited.
Amoeba 2
Amoeba
Rhizosphere sketch